二、用法例子
实例一:select语句中除default外,各case执行顺序是随机的
package main
import (
"fmt"
"time"
)
func main() {
chan1 := make(chan int)
chan2 := make(chan int)
go func() {
chan1 <- 1
time.Sleep(5 * time.Second)
}()
go func() {
chan2 <- 1
time.Sleep(5 * time.Second)
}()
select {
case <-chan1:
fmt.Println("chan1 ready.")
case <-chan2:
fmt.Println("chan2 ready.")
default:
fmt.Println("default")
}
fmt.Println("main exit.")
}
可能的输出一:
chan1 ready.
main exit.
可能的输出二:
chan2 ready.
main exit.
可能的输出三:
default
main exit.
实例二:select语句中如果没有default语句,则会阻塞等待任一case
package main
import (
"fmt"
"time"
)
func main() {
chan1 := make(chan int)
chan2 := make(chan int)
writeFlag := false
go func() {
for {
if writeFlag {
chan1 <- 1
}
time.Sleep(time.Second)
}
}()
go func() {
for {
if writeFlag {
chan2 <- 1
}
time.Sleep(time.Second)
}
}()
select {
case <-chan1:
fmt.Println("chan1 ready.")
case <-chan2:
fmt.Println("chan2 ready.")
}
fmt.Println("main exit.")
}
select会按照随机的顺序检测各case语句中channel是否ready,如果某个case中的channel已经ready则执行相应的case语句然后退出select流程,如果所有的channel都未ready且没有default的话,则会阻塞等待各个channel。所以上述程序会一直阻塞。
实例三:select语句中读操作要判断是否成功读取,关闭的channel也可以读取
package main
import (
"fmt"
)
func main() {
chan1 := make(chan int)
chan2 := make(chan int)
go func() {
close(chan1)
}()
go func() {
close(chan2)
}()
select {
case <-chan1:
fmt.Println("chan1 ready.")
case <-chan2:
fmt.Println("chan2 ready.")
}
fmt.Println("main exit.")
}
实例四:
package main
func main() {
select {
}
}
三、select实现原理
源码包src/runtime/select.go:scase定义了表示case语句的数据结构:
type scase struct {
c *hchan // chan
kind uint16
elem unsafe.Pointer // data element
}scase.c为当前case语句所操作的channel指针,这也说明了一个case语句只能操作一个channel。
scase.kind表示该case的类型,分为读channel、写channel和default,三种类型分别由常量定义:
caseRecv:case语句中尝试读取scase.c中的数据;
caseSend:case语句中尝试向scase.c中写入数据;
caseDefault: default语句
scase.elem表示缓冲区地址,跟据scase.kind不同,有不同的用途:
scase.kind == caseRecv : scase.elem表示读出channel的数据存放地址;
scase.kind == caseSend : scase.elem表示将要写入channel的数据存放地址;
select实现逻辑
源码包src/runtime/select.go:selectgo()定义了select选择case的函数:
func selectgo(cas0 *scase, order0 *uint16, ncases int) (int, bool)
函数参数:
cas0为scase数组的首地址,selectgo()就是从这些scase中找出一个返回。
order0为一个两倍cas0数组长度的buffer,保存scase随机序列pollorder和scase中channel地址序列lockorder
pollorder:每次selectgo执行都会把scase序列打乱,以达到随机检测case的目的。
lockorder:所有case语句中channel序列,以达到去重防止对channel加锁时重复加锁的目的。
ncases表示scase数组的长度
函数返回值:
- int: 选中case的编号,这个case编号跟代码一致
- bool: 是否成功从channle中读取了数据,如果选中的case是从channel中读数据,则该返回值表示是否读取成功。
selectgo实现伪代码如下:
func selectgo(cas0 *scase, order0 *uint16, ncases int) (int, bool) {
//1. 锁定scase语句中所有的channel
//2. 按照随机顺序检测scase中的channel是否ready
// 2.1 如果case可读,则读取channel中数据,解锁所有的channel,然后返回(case index, true)
// 2.2 如果case可写,则将数据写入channel,解锁所有的channel,然后返回(case index, false)
// 2.3 所有case都未ready,则解锁所有的channel,然后返回(default index, false)
//3. 所有case都未ready,且没有default语句
// 3.1 将当前协程加入到所有channel的等待队列
// 3.2 当将协程转入阻塞,等待被唤醒
//4. 唤醒后返回channel对应的case index
// 4.1 如果是读操作,解锁所有的channel,然后返回(case index, true)
// 4.2 如果是写操作,解锁所有的channel,然后返回(case index, false)
}注:对于读channel的case来说,如case elem, ok := <-chan1:, 如果channel有可能被其他协程关闭的情况下,一定要检测读取是否成功,因为close的channel也有可能返回,此时ok == false。select 不仅可以用于检测channel的数据写状态,还能监听读状态,利用这个特性,我们可以防止在没有go协程读channel时一直阻塞
